Update on Diabetes Treatment Strategies

Miguel A. Parilo, MD, FACP
Medical Director,
Bull Family Diabetes Center and
Miami Valley Hospital Diabetes Program
Associate Clinical Professor of Medicine,
Boonshoft School of Medicine at Wright State University
Objectives

- Highlight current guidelines regarding glycemia control and diabetes pharmacotherapy in diabetes mellitus
- Highlight the current pharmacologic classes available for the treatment of diabetes mellitus
- Identify patients with diabetes mellitus appropriate for insulin therapy
Prevalence Of Diabetes In The US

- Diabetes affects 25.8 million people
- 8.3% of the US population (13% Montgomery County)
 - Diagnosed: 18.8 million
 - Undiagnosed: 7.0 million
- Leading cause of kidney failure, nontraumatic lower-limb amputation, new cases of adult blindness
- Major cause of heart disease and stroke
- 7th leading cause of death in US (6th in Ohio)

www.cdc.gov/diabetes/
DM2 Is A Progressive Disease

Obesity Pre-DM Diabetes Uncontrolled Hyperglycemia

MICROVASCULAR DISEASE

Post-meal Glucose

Fasting Glucose

Glucose (mg/dL)

Years of DM

Relative Function (%)

Insulin Resistance β-cell Failure Insulin Level

MACROVASCULAR DISEASE

-10 -5 0 5 10 15 20 25 30

Adapted from International Diabetes Center, Minneapolis, Minnesota.
Impact of Intensive Therapy for Diabetes: Summary of Major Clinical Trials

<table>
<thead>
<tr>
<th>Study</th>
<th>Micro</th>
<th>Macro</th>
<th>Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>UKPDS</td>
<td> </td>
<td></td>
<td> </td>
</tr>
<tr>
<td>DCCT / EDIC</td>
<td> </td>
<td></td>
<td> </td>
</tr>
<tr>
<td>ACCORD</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADVANCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VADT</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- Initial Trial: ![grey_box](grey_box.png)
- Long Term Follow-up: ![light_blue_box](light_blue_box.png)

Anti-hyperglycemic Therapy: Glycemia targets

- HbA1c < 7.0% (MPG ~150 mg/dL)
- Pre-prandial PG <130 mg/dL
- Post-prandial PG <180 mg/dL
- Avoidance of hypoglycemia
- Individualization is key:
 - More stringent (6.0-6.5%) - short disease duration, healthier, no CVD
 - Less stringent (7.5-8.0%+) - comorbidities, complications, hypoglycemias, short life expectancy
Many Patients Are Not At The ADA/EASD Recommended A1c Goal Of < 7%

Patients (%) at A1c < 7%

1999-2002: 43.1%
2003-2006: 57.1%

Approach to Management of Hyperglycemia

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>More stringent</th>
<th>Less stringent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risks potentially associated with hypoglycemia, other adverse events</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Disease duration</td>
<td>Newly diagnosed</td>
<td>Long-standing</td>
</tr>
<tr>
<td>Life expectancy</td>
<td>Long</td>
<td>Short</td>
</tr>
<tr>
<td>Important comorbidities</td>
<td>Absent</td>
<td>Few/mild</td>
</tr>
<tr>
<td>Established vascular complications</td>
<td>Absent</td>
<td>Few/mild</td>
</tr>
<tr>
<td>Resources, support system</td>
<td>Readily available</td>
<td>Limited</td>
</tr>
</tbody>
</table>
Antihyperglycemic Therapy in DM2

- Initial drug monotherapy
 - Efficacy (+ HbA1c)
 - Hypoglycemia
 - Weight
 - Side effects
 - Costs

- Two-drug combinations
 - Efficacy (+ HbA1c)
 - Hypoglycemia
 - Weight
 - Major side effect(s)
 - Costs

- Three-drug combinations

- More complex insulin strategies

If combination therapy that includes basal insulin has failed to achieve HbA1c target after 3-6 months, proceed to a more complex insulin strategy, usually in combination with one or two noninsulin agents:

- Insulin (multiple daily doses)

Sequential Insulin Strategies in T2DM

Non-insulin regimens

Basal insulin only (usually with oral agents)

Basal insulin + 1 (meal-time) rapid-acting insulin injection

Basal insulin + ≥2 (meal-time) rapid-acting insulin injections

Premixed insulin twice daily

Number of injections Regimen complexity

1 low

2 mod.

3+ high

more flexible less flexible Flexibility

Diabetes Care, Diabetologia. 19 April 2012.
The Ominous Octet-Type 2

- Islet \(\beta \)-cell
 - Impaired Insulin Secretion
- Increased Glucagon Secretion
 - Increased HGP
- Increased Lipolysis
- Decreased Glucagon Secretion
 - Decreased Glucose Reabsorption
- Decreased Incretin Effect
 - Decreased Glucose Uptake
- Increased Glucose Uptake
 - Increased Lipolysis
- Neurotransmitter Dysfunction

Anti-hyperglycemic Therapy: Oral agents & non-insulin injectables

- Biguanides
- Sulfonylureas
- Thiazolidinediones
- Meglitinides
- Alpha-glucosidase inhibitors
- DPP-4 inhibitors
- SGLT-2 inhibitors
- Dopamine-2 agonists
- Bile acid sequestrants
- GLP-1 receptor agonists
- Amylinomimetics

Efficacy Of Oral Diabetes Agents*

<table>
<thead>
<tr>
<th>Drug</th>
<th>A1c Reduction (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metformin</td>
<td>1.5-2.0</td>
</tr>
<tr>
<td>SFU</td>
<td>1.5-2.0</td>
</tr>
<tr>
<td>TZD</td>
<td>1.0-1.2</td>
</tr>
<tr>
<td>Glinide</td>
<td>1.5-2.0</td>
</tr>
<tr>
<td>α–GI</td>
<td>0.7-1.0</td>
</tr>
<tr>
<td>DPP4i</td>
<td>0.5-1.0</td>
</tr>
<tr>
<td>SGLT2i(^1)</td>
<td>0.8-1.0</td>
</tr>
<tr>
<td>Bromocriptine IR(^1)</td>
<td>0.6-0.9</td>
</tr>
<tr>
<td>Colesevelam(^1)</td>
<td>0.3-0.5</td>
</tr>
</tbody>
</table>

*Not head to head. Baselines differ. Background therapies differ.

\(^1\)Information taken from manufacturer PI.

Fowler MJ. *Clinical Diabetes* October 2007 vol. 25 no. 4 131-134.
BIGUANIDES
Metformin

- Weight neutral
- Low cost
- GI side effects common (~25%)
 - Slow titration and administration with meals
 - Consider extended release
- Vitamin B12 malabsorption
- Cardioprotective?

Metformin

• **Lactic acidosis**
 - 1 case per 30,000 patient-years
 - Women: creatinine > 1.4 mg/dL
 - Men: creatinine > 1.5 mg/dL
 - Decompensated CHF, renal or hepatic insufficiency; comorbid conditions/drugs which predispose to hypoxia
 - Contrast: Hold day of procedure and restart at 48 hours if creatinine is acceptable

SULFONYLUREAS
Sulfonylureas

• **1st Generation**
 – Chlorpropamide, tolazamide, acetohexamide or tolbutamide

• **2nd Generation**
 – Glyburide, glipizide or glimepiride

• **Can target fasting hyperglycemia/postprandial**
 – Enhance insulin secretion
Sulfonylureas

- Secondary failure rate
- Hypoglycemia
 - Elderly
 - Impaired renal function
 - Irregular meal schedule
- Weight gain
- Low cost
- Increase cardiovascular events?

THIAZOLIDINEDIONES
Pioglitazone and Rosiglitazone

• **Directly reduce insulin resistance**
 – Targets fasting and postprandial hyperglycemia

• **No hypoglycemia**

• **Indirect markers of CVD**

• **β-cell preservation**
Thiazolidinediones

- Weight gain
- Edema
- CHF
- Anemia
- Bone fractures
- Bladder cancer
- Cardiovascular events?

Lewis JD et al. *Diabetes Care.* April 2011 vol. 34 no. 4 916-922.
MEGLITINIDES
Repaglinide and Nateglinide

- Targets postprandial hyperglycemia
 - Stimulates insulin secretion
 - Rapid onset; short acting
- No dose adjustment in renal insufficiency
- Less hypoglycemia than sulfonylureas
- No sulfa moiety

α-GLUCOSIDASE INHIBITORS
Acarbose and Miglitol

- Target postprandial hyperglycemia
- Inhibit saccharidases of small intestine
 - Delay glucose entry into the circulation
- Flatulence (80%), diarrhea (27%), n/v (8%)
- No hypoglycemia or weight gain
 - Treatment of hypoglycemia in combination treated patients may be affected. Use simple sugars

DIPEPTIDYL PEPTIDASE-4 INHIBITORS
GLP-1 and GIP Are Degraded by the DPP-4 Enzyme

Meal

Intestinal GLP-1 and GIP release

DPP-4 enzyme

Active GLP-1 and GIP

Rapid inactivation

Inactive metabolites

DPP4 Inhibitors

- Side effects comparable to placebo
- No significant hypoglycemia or weight gain
- Can be used in CKD/ESRD
- Pancreatitis

“FDA has not concluded these drugs may cause or contribute to the development of pancreatic cancer.”

www.fda.gov/drugs/drugsafety/ucm343187.htm.
Sodium-glucose co-transporter 2 (SGLT-2) inhibitor
SGLT-2 Inhibitor

Canagliflozin

• Usual dose is 100 mg orally once daily initially
 – May increase to 300 mg once daily
 – Max dose of 100 mg daily if eGFR of 45-59 mL/min
 – Contraindicated eGFR < 45 mL/min

• Reduction of BP and weight

• Increased genital mycotic infections

• UGT inducers (e.g., rifampin) reduce levels.
 – Consider increasing dose from 100 mg to 300 mg

• Monitor digoxin levels

• Hyperkalemia, renal insufficiency, hypotension and LDL elevation
Centrally Acting Dopamine Agonist
Bromocriptine IR

- **Increases CNS dopaminergic activity**
 - Diabetes patients may have low morning levels of hypothalamic dopamine, which is thought to lead to hyperglycemia and dyslipidemia

- **PPG reductions, without increasing plasma insulin concentrations**
 - Not prone to hypoglycemia or weight gain

- **Side effects**- nausea, dizziness, fatigue, HA

Bile Acid Sequestrant
Colesevelam

• **Lowers LDL cholesterol**

• **Mechanism to improve glycemic control is uncertain**
 – May act in the gastrointestinal tract to reduce glucose absorption.

• **Side effects** constipation, nausea, dyspepsia and increase TG ~20%

Incretins and Amylinomimetic
Multihormonal Regulation of Glucose: Insulin, Glucagon, GLP1 and Amylin

- **Postprandial Glucagon**
- **Amylin**
- **Insulin**
- **Pancreas**
- **Liver**
- **Stomach**
- **Brain**
- **Gut**
- **Plasma Glucose**
- **Rate of glucose appearance**
- **Rate of glucose disappearance**
- **Tissues**
- **Food Intake**
- **Gastric Emptying**
- **GLP-1**

Incretins and Amylin: The Diabetes Treatment Continuum

- **IGT**
- **Diet + Exercise**
- **Basal**
- **Meal Time**

- **Orals**
 - Indication: Incretin
 - **Time: Years**

- **Insulins**
 - Indication: Amylin
 - **Time: Years**

- **Relative function**
 - **β-cell workload**
 - **β-cell response**
 - **Time - Years**
Insulin
Anti-hyperglycemic Therapy: Insulin

- Regular
- Neutral protamine Hagedorn (NPH)
- Rapid analogues (aspart, glulisine, lispro)
- Basal analogues (detemir, glargine)
- Pre-mixed varieties

Insulin Therapy in DM2: Indications

- Significant hyperglycemia at presentation
- Hyperglycemia on effective doses of oral agents
- Intolerance of orals
- Need more flexibility
- Renal or hepatic disease

- Surgery
- Pregnancy
- Unable to afford orals
- Decompensation
 - Acute injury, stress, infection, myocardial ischemia, stroke
 - Hyperglycemia with ketones, weight loss
 - Use of diabetogenic medications

Anti-hyperglycemic Therapy: Insulin

Hours after injection:

- Rapid (Lispro, Aspart, Glulisine)
- Intermediate (NPH)
- Long (Detemir)
- Long (Glargine)

Insulin level:

The Basal/Bolus Insulin Concept
Persons With DM Require Both Basal And Prandial Insulin

• **Basal insulin:**
 – Suppresses glucose between meals and overnight
 – Maintains nearly constant levels
 – Provides ~50% of daily needs

• **Prandial insulin:**
 – Limits hyperglycemia after meals
 – Produces immediate rise and sharp peak at 1 hour
 – Provides ~10%-20% of daily requirement per meal

• **Supplemental/Correctional insulin:**
 – Addresses unanticipated hyperglycemia
Basal vs Mealtime Hyperglycemia

AUC from normal basal >1875 mg/dL·hr; Est HbA1c >8.7%
Basal vs Mealtime Hyperglycemia In Diabetes: Basal Corrected

Plasma Glucose (mg/dL)

AUC from normal basal 900 mg/dL·hr; Est HbA1c 7.2%
Basal vs Mealtime Hyperglycemia In Diabetes: *Mealtime Corrected*

- **Plasma Glucose (mg/dL)**
 - 0
 - 50
 - 100
 - 150
 - 200
 - 250

Time of Day
- 0600
- 1200
- 1800
- 2400
- 0600

AUC from normal basal 1425 mg/dL·hr; Est HbA1c 7.9

Basal hyperglycemia

Mealtime hyperglycemia

Basal vs Mealtime Hyperglycemia In Diabetes: *Basal & Mealtime Corrected*

AUC from normal basal 225 mg/dL·hr; Est HbA1c 6.4%

Initiating Basal/Bolus De Novo

• **Total Daily Dose**
 – Type 2 Diabetes: 0.5 to 1 unit/kg/d
 – Type 1 Diabetes: 0.4 to 0.8 unit/kg/d

• **Basal**
 – Half the total daily dose

• **Bolus**
 – Half the total daily dose
 – Often reduced until adequately eating

• **Correction**
 – Based upon total daily dose

Limitations Of Human Insulin

- **Does not mimic endogenous insulin**
 - Variable onset, peak and duration of action

- **Potential for unpredictable hypoglycemia**
 - Major factor limiting insulin adjustments and aggressive glucose control

- **More weight gain**
Long-Acting Analogs: Medical Rationale

- Mimic basal physiological insulin profile
- Less hypoglycemia
- More predictable insulin delivery
- Improve glycemic excursions
- Less weight gain

Rapid-Acting Analogs: Medical Rationale

- Convenient administration with meals
- Faster onset of action
 - Reduce postprandial hyperglycemia
- Shorter duration of activity
 - Reduce late postprandial hypoglycemia
- More predictable insulin delivery
- Mimic physiologic insulin profile

Human Insulin Time-Action Patterns

- Normal Insulin Secretion at Meal Time
- Regular insulin

Change in Serum Insulin vs. Time (hours)

s.c. Injection
Baseline Level

A More Physiologic Time-Action

- Normal Insulin Secretion at Meal Time
- Analog insulin

Change in Serum insulin

s.c. injection

Time (hours)

Baseline Level

Spectrum Of Options

Conventional Insulin Therapy

Intensive Insulin Therapy

Insulin Pump Therapy

Sensor Augmented Pumps

Key Points

• Glucose targets & therapies must be individualized
• Diet, exercise & education = foundation
• Unless contraindicated, metformin 1st-line drug
• After metformin, data are limited
 – Combination therapy with oral and/or injectables is reasonable
 – Minimize side effects
• Many patients will require insulin therapy